PhD Studentship: Detailed particle modelling for clean carbon applications

About Company
University of Southampton
UK
Job Info
Job Status: Expired
No of Vacancies: 1
Date Posted: November 29, 2017
Expiry Date: December 18, 2017
Job Type: PhD
Job Level: Any
Salary Info
Salary Type: Negotiable
Apply on this job
This job already Expired,
Application not allowed this job status.
Share this job

Engineering & Environment

Location:  Highfield Campus
Closing Date:   Monday 18 December 2017
Reference:  932017F2

Particle systems are ubiquitous across the environmental (air particles, riverbeds, sand dunes and avalanches, etc.), industrial (combustion unit reactors, and spray coating technologies, etc.) and pharmaceutical (ingredient conveying, blending, drying and capsule loading, etc.) sectors. With significant efforts being made on a global scale to tackle climate challenges there is a drive towards improving efficiency across the various industrial and power sectors, and being more equipped to predict and adapt to natural events. The scale of these processes means computational methods for prediction and optimisation plays a crucial role.

Despite advances being made over recent years to capture more detailed particle physics into existing particle models, they remain far from reliable due to the many assumptions still being made. These assumptions directly impact the prediction of the overall performance of these processes, such as assuming all particles are frictionless, uniform-sized particles and even perfectly spherical.

Understanding and incorporating more detailed physics can support the prediction of key physical phenomena commonly experienced across many industrial and power-generation sectors, such as particle segregation, particle sliding, cluster formation and even particle fragmentation in highly collisional regimes.

This project will be require someone with a strong mathematically and computational fluid dynamics background. Ideally, the applicant would have coding experience, ideally with computational fluid dynamics open source packages such as OpenFOAM.

If you wish to discuss any details of the project informally, please contact Dr Lindsay-Marie Armstrong, Energy Technology research group, Email: L.Armstrong@soton.ac.uk, Tel: +44 (0) 2380 59 4760.